# External modules
import numpy as np
[docs]
def write_wing_FFD_file(fileName, slices, N0, N1, N2, axes=None, dist=None):
"""
This function can be used to generate a simple FFD. The FFD can be made up
of more than one volume, but the volumes will be connected. It is meant for
doing simple wing FFDs.
Parameters
----------
fileName : str
Name of output file. File is written in plot3d format.
slices : numpy array of (Nvol+1, 2, 2, 3)
Array of slices. Each slice should contain four points in 3D that will
be the corners of the FFD on that slice. If the zeroth dimension size
is greater than 2, then multiple volumes will be created, connected by
the intermediate slice.
N0 : integer or list
Number of points to distribute along the zeroth dimension (along the
slice direction).
N1 : integer or list
Number of points to distribute along the first dimension.
N2 : integer or list
Number of points to distribute along the second dimension.
axes : list of ['i', 'j', 'k'] in arbitrary order
The user can interchange which index of the FFD corresponds with each
dimension of slices. By default 'k' -> 0, 'j' -> 1, 'i' -> 2.
dist : list
For each volume, the user can specify the distribution of points along
each dimension. Options include:
- linear
- cosine
- left (tighter spacing on the left side)
- right (tighter spacing on the other left side)
Examples
--------
This is an example of two volumes:
.. code-block:: python
axes = ['k', 'j', 'i']
slices = np.array([
# Slice 1
[[[0, 0, 0], [1, 0, 0]],
[[0, 0.2, 0], [1, 0.2, 0]]],
# Slice 2
[[[0, 0, 2], [1, 0, 2]],
[[0, 0.2, 2], [1, 0.2, 2]]],
# Slice 3
[[[0.5, 0, 6], [1, 0, 6]],
[[0.5, 0.2, 6], [1, 0.2, 6]]],
])
N0 = 5
N1 = 2
N2 = 8
dist = [
['left', 'linear', 'linear'],
['cosine', 'linear', 'right']
]
"""
Nvol = slices.shape[0] - 1
if axes is None:
axes = ["k", "j", "i"]
if dist is None:
dist = [["linear", "linear", "linear"]] * Nvol
assert len(dist) == Nvol
# Make sure the sizes are the right type in each dimension. If an integer is
# given, use that same size for every volume.
size = [N0, N1, N2]
for iVol, item in enumerate(size):
if isinstance(item, int):
size[iVol] = [item] * Nvol
elif not isinstance(item, list):
print("Incorrect type for N0, N1, or N2.")
assert len(size[iVol]) == Nvol
N0, N1, N2 = size
f = open(fileName, "w")
f.write(f"{Nvol}\n")
def getDistribution(distIn, N):
if not isinstance(distIn, str):
assert len(distIn) == N
dist = distIn.copy()
elif distIn == "linear":
dist = np.linspace(0, 1, N)
elif distIn == "cosine":
dist = (1 - np.cos(np.linspace(0, np.pi, N))) / 2.0
elif distIn == "left":
dist = np.linspace(0, 1, N) ** (3.0 / 2.0)
elif distIn == "right":
dist = np.linspace(0, 1, N) ** (2.0 / 3.0)
return dist
for i in range(Nvol):
size = [N0[i], N1[i], N2[i]]
Ni = size[axes.index("i")]
Nj = size[axes.index("j")]
Nk = size[axes.index("k")]
f.write("%d\t%d\t%d\n" % (Ni, Nj, Nk))
for iVol in range(Nvol):
size = [N0[iVol], N1[iVol], N2[iVol]]
Ni = size[axes.index("i")]
Nj = size[axes.index("j")]
Nk = size[axes.index("k")]
# Get distributions for each axis
d0 = getDistribution(dist[iVol][0], size[0])
d1 = getDistribution(dist[iVol][1], size[1])
d2 = getDistribution(dist[iVol][2], size[2])
# Initialize coordinate arrays
X = np.zeros(size + [3])
for j in range(size[0]):
P = slices[iVol, 0, 0] + np.outer(d0, (slices[iVol + 1, 0, 0] - slices[iVol, 0, 0]))[j]
Q = slices[iVol, 0, 1] + np.outer(d0, (slices[iVol + 1, 0, 1] - slices[iVol, 0, 1]))[j]
R = slices[iVol, 1, 0] + np.outer(d0, (slices[iVol + 1, 1, 0] - slices[iVol, 1, 0]))[j]
S = slices[iVol, 1, 1] + np.outer(d0, (slices[iVol + 1, 1, 1] - slices[iVol, 1, 1]))[j]
for k in range(size[1]):
U = P + np.outer(d1, (R - P))[k]
V = Q + np.outer(d1, (S - Q))[k]
X[j, k] = U + np.outer(d2, (V - U))
for dim in range(3):
line = ""
for k in range(Nk):
for j in range(Nj):
for i in range(Ni):
idc = [-1, -1, -1]
idc[axes.index("i")] = i
idc[axes.index("j")] = j
idc[axes.index("k")] = k
line += f"{X[idc[0], idc[1], idc[2], dim]: .4e}\t"
if len(line) + 11 > 80:
f.write(line + "\n")
line = ""
if len(line) > 0:
f.write(line + "\n")
f.close()
[docs]
def createFittedWingFFD(surf, surfFormat, outFile, leList, teList, nSpan, nChord, absMargins, relMargins, liftIndex):
"""
Generates a wing FFD with chordwise points that follow the airfoil geometry.
Parameters
----------
surf : pyGeo object or list or str
The surface around which the FFD will be created.
See the documentation for :meth:`pygeo.constraints.DVCon.DVConstraints.setSurface` for details.
surfFormat : str
The surface format.
See the documentation for :meth:`pygeo.constraints.DVCon.DVConstraints.setSurface` for details.
outFile : str
Name of output file written in PLOT3D format.
leList : list or array
List or array of points (of size Nx3 where N is at least 2) defining the 'leading edge'.
teList : list or array
Same as leList but for the trailing edge.
nSpan : int or list of int
Number of spanwise sections in the FFD.
Use a list of length N-1 to specify the number for each segment defined by leList and teList
and to precisely match intermediate locations.
nChord : int
Number of chordwise points in the FFD.
absMargins : list of float
List with 3 items specifying the absolute margins in the [chordwise, spanwise, thickness] directions.
This is useful for areas where the relative margin is too small, such as the trailing edge or wing tip.
The total margin is the sum of the absolute and relative margins.
relMargins : list of float
List with 3 items specifying the relative margins in the [chordwise, spanwise, thickness] directions.
Relative margins are applied as a fraction of local chord, wing span, and local thickness.
The total margin is the sum of the absolute and relative margins.
liftIndex : int
Index specifying which direction lift is in (same as the ADflow option).
Either 2 for the y-axis or 3 for the z-axis.
This is used to determine the wing's spanwise direction.
Examples
--------
>>> CFDSolver = ADFLOW(options=aeroOptions)
>>> surf = CFDSolver.getTriangulatedMeshSurface()
>>> surfFormat = "point-vector"
>>> outFile = "wing_ffd.xyz"
>>> nSpan = [4, 4]
>>> nChord = 8
>>> relMargins = [0.01, 0.001, 0.01]
>>> absMargins = [0.05, 0.001, 0.05]
>>> liftIndex = 3
>>> createFittedWingFFD(surf, surfFormat, outFile, leList, teList, nSpan, nChord, absMargins, relMargins, liftIndex)
"""
# Import inside this function to avoid circular imports
# First party modules
from pygeo import DVConstraints
# Set the triangulated surface in DVCon
DVCon = DVConstraints()
DVCon.setSurface(surf, surfFormat=surfFormat)
# Get the surface intersections; surfCoords has dimensions [nSpanTotal, nChord, 2, 3]
surfCoords = DVCon._generateIntersections(leList, teList, nSpan, nChord, surfaceName="default")
nSpanTotal = np.sum(nSpan)
# Initialize FFD coordinates to the surface coordinates
FFDCoords = surfCoords.copy()
# Swap axes to get the FFD coordinates into PLOT3D ordering [x, y, z, 3]
FFDCoords = np.swapaxes(FFDCoords, 0, 1) # [nChord, nSpanTotal, 2, 3]
if liftIndex == 2:
# Swap axes again so that z is the spanwise direction instead of y
FFDCoords = np.swapaxes(FFDCoords, 1, 2) # [nChord, 2, nSpanTotal, 3]
# Assign coordinates and dimensions in each direction
# x is always the chordwise direction
leadingEdge = FFDCoords[0, :, :, 0]
trailingEdge = FFDCoords[-1, :, :, 0]
Nx = nChord
# y and z depend on the liftIndex
if liftIndex == 2:
root = FFDCoords[:, :, 0, 2]
tip = FFDCoords[:, :, -1, 2]
upperSurface = FFDCoords[:, 0, :, 1]
lowerSurface = FFDCoords[:, 1, :, 1]
Ny = 2
Nz = nSpanTotal
elif liftIndex == 3:
root = FFDCoords[:, 0, :, 1]
tip = FFDCoords[:, -1, :, 1]
upperSurface = FFDCoords[:, :, 1, 2]
lowerSurface = FFDCoords[:, :, 0, 2]
Ny = nSpanTotal
Nz = 2
else:
raise ValueError("liftIndex must be 2 (for y-axis) or 3 (for z-axis)")
# Add margins to FFD coordinates
chordLength = trailingEdge - leadingEdge
leadingEdge -= chordLength * relMargins[0] + absMargins[0]
trailingEdge += chordLength * relMargins[0] + absMargins[0]
span = np.max(tip - root)
root -= span * relMargins[1] + absMargins[1]
tip += span * relMargins[1] + absMargins[1]
thickness = upperSurface - lowerSurface
upperSurface += thickness * relMargins[2] + absMargins[2]
lowerSurface -= thickness * relMargins[2] + absMargins[2]
# Write FFD file
f = open(outFile, "w")
f.write("1\n")
f.write(f"{Nx} {Ny} {Nz}\n")
for ell in range(3):
for k in range(Nz):
for j in range(Ny):
for i in range(Nx):
f.write("%.15f " % (FFDCoords[i, j, k, ell]))
f.write("\n")
f.close()