Source code for pygeo.pyNetwork

# ======================================================================
#         Imports
# ======================================================================
import os
import numpy as np
from pyspline.utils import openTecplot, writeTecplot1D, closeTecplot, line
from .topology import CurveTopology


[docs]class pyNetwork: """ A class for manipulating a collection of curve objects. pyNetwork is the 1 dimensional analog of pyGeo (surfaces 2D) and pyBlock (volumes 3D). The idea is that a 'network' is a collection of 1D splines that are connected in some manner. This module provides facility for dealing with such structures. Parameters ---------- curves : list of pySpline.Curve objects Individual curves to form the network. """ def __init__(self, curves): self.curves = curves self.nCurve = len(curves) self.topo = None self.coef = None self._doConnectivity() def _doConnectivity(self): """ Compute the connectivity of the set of curve objects. """ coords = np.zeros((self.nCurve, 2, 3)) for icurve in range(self.nCurve): coords[icurve][0] = self.curves[icurve](0) coords[icurve][1] = self.curves[icurve](1) self.topo = CurveTopology(coords=coords) sizes = [] for icurve in range(self.nCurve): sizes.append(self.curves[icurve].nCtl) self.topo.calcGlobalNumbering(sizes) self.coef = np.zeros((self.topo.nGlobal, 3)) for i in range(len(self.coef)): icurve = self.topo.gIndex[i][0][0] ii = self.topo.gIndex[i][0][1] self.coef[i] = self.curves[icurve].coef[ii] # ---------------------------------------------------------------------- # Curve Writing Output Functions # ----------------------------------------------------------------------
[docs] def writeTecplot(self, fileName, orig=False, curves=True, coef=True, curveLabels=False, nodeLabels=False): """Write the pyNetwork Object to Tecplot .dat file Parameters ---------- fileName : str File name for tecplot file. Should have .dat extension curves : bool Flag to write discrete approximation of the actual curve coef : bool Flag to write b-spline coefficients curveLabels : bool Flag to write a separate label file with the curve indices nodeLabels : bool Flag to write a separate node label file with the node indices """ f = openTecplot(fileName, 3) if curves: for icurve in range(self.nCurve): self.curves[icurve].computeData() writeTecplot1D(f, "interpolated", self.curves[icurve].data) if coef: for icurve in range(self.nCurve): writeTecplot1D(f, "coef", self.curves[icurve].coef) if orig: for icurve in range(self.nCurve): writeTecplot1D(f, "coef", self.curves[icurve].X) # Write out The Curve and Node Labels dirName, fileName = os.path.split(fileName) fileBaseName, _ = os.path.splitext(fileName) if curveLabels: # Split the filename off labelFilename = dirName + "./" + fileBaseName + ".curve_labels.dat" f2 = open(labelFilename, "w") for icurve in range(self.nCurve): mid = np.floor(self.curves[icurve].nCtl / 2) textString = 'TEXT CS=GRID3D, X=%f,Y=%f,Z=%f,ZN=%d,T="S%d"\n' % ( self.curves[icurve].coef[mid, 0], self.curves[icurve].coef[mid, 1], self.curves[icurve].coef[mid, 2], icurve + 1, icurve, ) f2.write("%s" % (textString)) f2.close() if nodeLabels: # First we need to figure out where the corners actually *are* nNodes = len(np.unique(self.topo.nodeLink.flatten())) nodeCoord = np.zeros((nNodes, 3)) for i in range(nNodes): # Try to find node i for icurve in range(self.nCurve): if self.topo.nodeLink[icurve][0] == i: coordinate = self.curves[icurve].getValueCorner(0) break elif self.topo.nodeLink[icurve][1] == i: coordinate = self.curves[icurve].getValueCorner(1) break elif self.topo.nodeLink[icurve][2] == i: coordinate = self.curves[icurve].getValueCorner(2) break elif self.topo.nodeLink[icurve][3] == i: coordinate = self.curves[icurve].getValueCorner(3) break nodeCoord[i] = coordinate # Split the filename off labelFilename = dirName + "./" + fileBaseName + ".node_labels.dat" f2 = open(labelFilename, "w") for i in range(nNodes): textString = 'TEXT CS=GRID3D, X=%f, Y=%f, Z=%f, T="n%d"\n' % ( nodeCoord[i][0], nodeCoord[i][1], nodeCoord[i][2], i, ) f2.write("%s" % (textString)) f2.close() closeTecplot(f)
def _updateCurveCoef(self): """update the coefficents on the pyNetwork update""" for ii in range(len(self.coef)): for jj in range(len(self.topo.gIndex[ii])): icurve = self.topo.gIndex[ii][jj][0] i = self.topo.gIndex[ii][jj][1] self.curves[icurve].coef[i] = self.coef[ii]
[docs] def getBounds(self, curves=None): """Determine the extents of the set of curves. Parameters ---------- curves : list Optional list of the indices of the curve objects to include. Returns ------- xMin : array of length 3 Lower corner of the bounding box xMax : array of length 3 Upper corner of the bounding box """ if curves is None: curves = np.arange(self.nCurve) Xmin0, Xmax0 = self.curves[curves[0]].getBounds() for i in range(1, len(curves)): icurve = curves[i] Xmin, Xmax = self.curves[icurve].getBounds() # Now check them if Xmin[0] < Xmin0[0]: Xmin0[0] = Xmin[0] if Xmin[1] < Xmin0[1]: Xmin0[1] = Xmin[1] if Xmin[2] < Xmin0[2]: Xmin0[2] = Xmin[2] if Xmax[0] > Xmax0[0]: Xmax0[0] = Xmax[0] if Xmax[1] > Xmax0[1]: Xmax0[1] = Xmax[1] if Xmax[2] > Xmax0[2]: Xmax0[2] = Xmax[2] return Xmin0, Xmax0
[docs] def projectRays(self, points, axis, curves=None, raySize=1.5, **kwargs): """Given a set of points and a vector defining a direction, i.e. a ray, determine the minimum distance between these rays and any of the curves this object has. Parameters ---------- points : array A single point (array length 3) or a set of points (N,3) array axis : array A single direction vector (length 3) or a (N,3) array of direction vectors curves : list An optional list of curve indices to you. If not given, all curve objects are used. raySize : float The ray direction is based on the axis vector. The magnitude of the ray is estimated based on the minimum distance between the point and the set of curves. That distance is then multiplied by "raySize" to get the final ray vector. Then we find the intersection between the ray and the curves. If the ray is not long enough to actually intersect with any of the curves, then the link will be drawn to the location on the curve that is closest to the end of the ray, which will not be a projection along "axis" unless the curve is perpendicular to the axis vector. The default of 1.5 works in most cases but can cause unexpected behavior sometimes which can be fixed by increasing the default. kwargs : dict Keyword arguments passed to Curve.projectCurve() function Returns ------- curveID : int The index of the curve with the closest distance s : float or array The curve parameter on self.curves[curveID] that is cloested to the point(s). """ # Do point project to determine the approximate distance such # that we know how large to make the line representing the ray. curveID0, s0 = self.projectPoints(points, curves=curves, **kwargs) D0 = np.zeros((len(s0), 3), "d") for i in range(len(s0)): D0[i, :] = self.curves[curveID0[i]](s0[i]) - points[i] if curves is None: curves = np.arange(self.nCurve) # Now do the same calc as before N = len(points) S = np.zeros((N, len(curves))) D = np.zeros((N, len(curves), 3)) for i in range(len(curves)): icurve = curves[i] for j in range(N): ray = line( points[j] - axis * raySize * np.linalg.norm(D0[j]), points[j] + axis * raySize * np.linalg.norm(D0[j]), ) S[j, i], t, D[j, i, :] = self.curves[icurve].projectCurve(ray, nIter=2000) if t == 0.0 or t == 1.0: print( "Warning: The link for attached point {:d} was drawn" "from the curve to the end of the ray," "indicating that the ray might not have been long" "enough to intersect the nearest curve.".format(j) ) s = np.zeros(N) curveID = np.zeros(N, "intc") # Now post-process to get the lowest one for i in range(N): d0 = np.linalg.norm(D[i, 0]) s[i] = S[i, 0] curveID[i] = curves[0] for j in range(len(curves)): if np.linalg.norm(D[i, j]) < d0: d0 = np.linalg.norm(D[i, j]) s[i] = S[i, j] curveID[i] = curves[j] return curveID, s
[docs] def projectPoints(self, points, *args, curves=None, **kwargs): """Project one or more points onto the nearest curve. This algorihm isn't exactly efficient: We simply project the nodes on each of the curves and take the lowest one. Parameters ---------- points : array A single point (array length 3) or a set of points (N,3) array curves : list An optional list of curve indices to you. If not given, all curve objects are used. kwargs : dict Keyword arguments passed to curve.projectPoint() function Returns ------- curveID : int The index of the curve with the closest distance s : float or array The curve parameter on self.curves[curveID] that is cloested to the point(s). """ if curves is None: curves = np.arange(self.nCurve) N = len(points) S = np.zeros((N, len(curves))) D = np.zeros((N, len(curves), 3)) for i in range(len(curves)): icurve = curves[i] S[:, i], D[:, i, :] = self.curves[icurve].projectPoint(points, *args, **kwargs) s = np.zeros(N) curveID = np.zeros(N, "intc") # Now post-process to get the lowest one for i in range(N): d0 = np.linalg.norm(D[i, 0]) s[i] = S[i, 0] curveID[i] = curves[0] for j in range(len(curves)): if np.linalg.norm(D[i, j]) < d0: d0 = np.linalg.norm(D[i, j]) s[i] = S[i, j] curveID[i] = curves[j] return curveID, s